Question1. What Is Data Mining?
Answer : Data mining is a process of extracting hidden trends within a datawarehouse. For example an insurance dataware house can be used to mine data for the most high risk people to insure in a certain geographial area.
Question2. Differentiate Between Data Mining And Data Warehousing?
Answer : Data warehousing is merely extracting data from different sources, cleaning the data and storing it in the warehouse. Where as data mining aims to examine or explore the data using queries. These queries can be fired on the data warehouse. Explore the data in data mining helps in reporting, planning strategies, finding meaningful patterns etc.
E.g. a data warehouse of a company stores all the relevant information of projects and employees. Using Data mining, one can use this data to generate different reports like profits generated etc.
Question3. What Is Data Purging?
Answer : The process of cleaning junk data is termed as data purging. Purging data would mean getting rid of unnecessary NULL values of columns. This usually happens when the size of the database gets too large.
Question4. What Are Cubes?
Answer : A data cube stores data in a summarized version which helps in a faster analysis of data. The data is stored in such a way that it allows reporting easily.
E.g. using a data cube A user may want to analyze weekly, monthly performance of an employee. Here, month and week could be considered as the dimensions of the cube.
Question5. What Are Olap And Oltp?
Answer : An IT system can be divided into Analytical Process and Transactional Process.
OLTP – categorized by short online transactions. The emphasis is query processing, maintaining data integration in multi-access environment.
OLAP – Low volumes of transactions are categorized by OLAP. Queries involve aggregation and very complex. Response time is an effectiveness measure and used widely in data mining techniques.
Question6. What Are The Different Problems That "data Mining" Can Solve?
Answer :
• Data mining helps analysts in making faster business decisions which increases revenue with lower costs.
• Data mining helps analysts in making faster business decisions which increases revenue with lower costs.
• Data mining helps to understand, explore and identify patterns of data.
• Data mining automates process of finding predictive information in large databases.
• Helps to identify previously hidden patterns.
Question7. What Are Different Stages Of "data Mining"?
Answer :
Exploration: This stage involves preparation and collection of data. it also involves data cleaning, transformation. Based on size of data, different tools to analyze the data may be required. This stage helps to determine different variables of the data to determine their behavior.
Model building and validation: This stage involves choosing the best model based on their predictive performance. The model is then applied on the different data sets and compared for best performance. This stage is also called as pattern identification. This stage is a little complex because it involves choosing the best pattern to allow easy predictions.
Deployment: Based on model selected in previous stage, it is applied to the data sets. This is to generate predictions or estimates of the expected outcome.
Question8. What Is Discrete And Continuous Data In Data Mining World?
Answer : Discreet data can be considered as defined or finite data. E.g. Mobile numbers, gender. Continuous data can be considered as data which changes continuously and in an ordered fashion. E.g. age.
Question9. What Is Model In Data Mining World?
Answer : Models in Data mining help the different algorithms in decision making or pattern matching. The second stage of data mining involves considering various models and choosing the best one based on their predictive performance.
Question10. How Does The Data Mining And Data Warehousing Work Together?
Answer : Data warehousing can be used for analyzing the business needs by storing data in a meaningful form. Using Data mining, one can forecast the business needs. Data warehouse can act as a source of this forecasting.
Question11. What Is A Decision Tree Algorithm?
Answer : A decision tree is a tree in which every node is either a leaf node or a decision node. This tree takes an input an object and outputs some decision. All Paths from root node to the leaf node are reached by either using AND or OR or BOTH. The tree is constructed using the regularities of the data. The decision tree is not affected by Automatic Data Preparation.
Question12. What Is Naive Bayes Algorithm?
Answer : Naive Bayes Algorithm is used to generate mining models. These models help to identify relationships between input columns and the predictable columns. This algorithm can be used in the initial stage of exploration. The algorithm calculates the probability of every state of each input column given predictable columns possible states. After the model is made, the results can be used for exploration and making predictions.
Question13. Explain Clustering Algorithm?
Answer : Clustering algorithm is used to group sets of data with similar characteristics also called as clusters. These clusters help in making faster decisions, and exploring data. The algorithm first identifies relationships in a dataset following which it generates a series of clusters based on the relationships. The process of creating clusters is iterative. The algorithm redefines the groupings to create clusters that better represent the data.
Question14. What Is Time Series Algorithm In Data Mining?
Answer : Time series algorithm can be used to predict continuous values of data. Once the algorithm is skilled to predict a series of data, it can predict the outcome of other series. The algorithm generates a model that can predict trends based only on the original dataset. New data can also be added that automatically becomes a part of the trend analysis.
E.g. Performance one employee can influence or forecast the profit.
Question15. Explain Association Algorithm In Data Mining?
Answer : Association algorithm is used for recommendation engine that is based on a market based analysis. This engine suggests products to customers based on what they bought earlier. The model is built on a dataset containing identifiers. These identifiers are both for individual cases and for the items that cases contain. These groups of items in a data set are called as an item set. The algorithm traverses a data set to find items that appear in a case. MINIMUM_SUPPORT parameter is used any associated items that appear into an item set.
No comments:
Post a Comment